üçgende kenar ortay nasıl bulunur - üçgende ağırlık merkezi - üçgende kenarortayın özellikleri
1. Ağırlık Merkezi
Üçgenlerde kenarortaylar bir noktada kesişirler.Kenarortayların kesişim noktasına ağırlık merkezi denir.
ABC üçgeninde [AD], [BE] ve [CF] kenarortaylarının
kesiştikleri G noktasına ABC üçgeninin ağırlık merkezi
denir.
a. Ağırlık merkezi kenarortayı, kenara 1 birim, köşeye 2 birim olacak şekilde böler.
ABC üçgeninde D, E, F noktaları bulundukları kenarların
orta noktaları ve G ağırlık merkezi ise
eşitlikleri vardır.
b. Bir üçgende iki kenarortayın kesişmesiyle oluşan nokta ağırlık merkezidir.
c. ABC üçgeninde [AD] kenarortay ve |AG| = 2|GD| olduğundan G noktası
ağırlık merkezidir.
d. ABC üçgeninde [AD] kenarortay ve |CG| = 2|FG| olduğundan G noktası ağırlık merkezidir.
e. ABC üçgeninde |AG| = 2|GD| ve |CG| = 2|GF|
eşitliğini sağlayan G noktası ABC
üçgeninin ağırlık merkezidir.
2. Dik üçgende hipotenüse ait kenarortay hipotenüsün yarısına eşittir.
ABC dik üçgeninde [BD] hipotenüse ait kenarortay
|AG|=|DC|=|BD|
3. Kenarortayların Böldüğü Alanlar
a.Kenarortaylar üçgenin alanını altı eşit parçaya bölerler.
b.G ağırlık merkezi köşelere birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.
c. G ağırlık merkezi kenarların orta noktaları ile birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.
4.ABC üçgeninde kenarortaylar ve [FE] çizilirse |AK| = 3x
|KG| = x
|GD| = 2x eşitlikleri bulunur.
K noktası [AD] kenarortayının orta noktasıdır.
[FE] //[BC] 2[FE]=[BC]
a. ABC üçgeninde kenarortaylar ve [FE] çizildiğinde şekildeki gibi bir alan bölünmesi oluşur.
b.Kenarların orta noktalarını birbirine birleştirdiğimizde üçgenin alanı dört eşit parçaya bölünür.
5. Kenarortay Uzunluğu
ABC üçgeninde A köşesinden çizilen
kenarortayın uzunluğuna Va dersek
Bu bağıntı diğer kenarortaylar içinde geçerlidir.
Kenarortaylar taraf tarafa toplanırsa
Kenarortaylar taraf tarafa toplanırsa
6. Dik Üçgende Kenarortaylar
A açısı 90° olan bir dik üçgende kenarortaylar arasında.
alıntı
1. Ağırlık Merkezi
Üçgenlerde kenarortaylar bir noktada kesişirler.Kenarortayların kesişim noktasına ağırlık merkezi denir.
ABC üçgeninde [AD], [BE] ve [CF] kenarortaylarının
kesiştikleri G noktasına ABC üçgeninin ağırlık merkezi
denir.
a. Ağırlık merkezi kenarortayı, kenara 1 birim, köşeye 2 birim olacak şekilde böler.
ABC üçgeninde D, E, F noktaları bulundukları kenarların
orta noktaları ve G ağırlık merkezi ise
eşitlikleri vardır.
b. Bir üçgende iki kenarortayın kesişmesiyle oluşan nokta ağırlık merkezidir.
c. ABC üçgeninde [AD] kenarortay ve |AG| = 2|GD| olduğundan G noktası
ağırlık merkezidir.
d. ABC üçgeninde [AD] kenarortay ve |CG| = 2|FG| olduğundan G noktası ağırlık merkezidir.
e. ABC üçgeninde |AG| = 2|GD| ve |CG| = 2|GF|
eşitliğini sağlayan G noktası ABC
üçgeninin ağırlık merkezidir.
2. Dik üçgende hipotenüse ait kenarortay hipotenüsün yarısına eşittir.
ABC dik üçgeninde [BD] hipotenüse ait kenarortay
|AG|=|DC|=|BD|
3. Kenarortayların Böldüğü Alanlar
a.Kenarortaylar üçgenin alanını altı eşit parçaya bölerler.
b.G ağırlık merkezi köşelere birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.
c. G ağırlık merkezi kenarların orta noktaları ile birleştirildiğinde üçgenin alanı üç eşit parçaya bölünür.
4.ABC üçgeninde kenarortaylar ve [FE] çizilirse |AK| = 3x
|KG| = x
|GD| = 2x eşitlikleri bulunur.
K noktası [AD] kenarortayının orta noktasıdır.
[FE] //[BC] 2[FE]=[BC]
a. ABC üçgeninde kenarortaylar ve [FE] çizildiğinde şekildeki gibi bir alan bölünmesi oluşur.
b.Kenarların orta noktalarını birbirine birleştirdiğimizde üçgenin alanı dört eşit parçaya bölünür.
5. Kenarortay Uzunluğu
ABC üçgeninde A köşesinden çizilen
kenarortayın uzunluğuna Va dersek
Bu bağıntı diğer kenarortaylar içinde geçerlidir.
Kenarortaylar taraf tarafa toplanırsa
Kenarortaylar taraf tarafa toplanırsa
6. Dik Üçgende Kenarortaylar
A açısı 90° olan bir dik üçgende kenarortaylar arasında.
alıntı