AdBlock kullandığınızı tespit ettik.

Bu sitenin devam edebilmesi için lütfen devre dışı bırakın.

Diferansiyel Geometri Hakkında Bilgi

theking

Yeni Üye
Katılım
2 Şubat 2024
Mesajlar
231.543
Tepkime puanı
3
Puan
38
Yaş
36
Diferansiyel Geometri Nedir?

Diferansiyel geometri türevin tanımlı olduğu Riemannn manifoldlarının özellikleriyle uğraşan matematiğin bir alt disiplinidir. Başka bir deyişle, bu manifoldlar üzerindeki metrik kavramlarla uğraşır. Eğrilik, eğriler için burulma ve yüzeyler için değişik eğrilikler araştırılan özellikler arasındadır.

Diferansiyel geometri, geometrik problemler üzerinde diferansiyel metodlar ve integral hesaplamalarıyla çalışan matematiksel bir disiplindir.


Diferansiyel geometri: Hesaplamanın ve özellikle diferansiyel hesâbın geometriye tatbik edildiği dal. On dokuzuncu yüzyıldaki en değerli matematik kitaplarında diferansiyel geometrinin temeli, düzlem ve uzaydaki eğrilerle uzaydaki yüzeyler olmuştur. Diferansiyel geometrinin temel kavramları eğrilerin teğetleri, teğetlerin değişmeleri ve eğrilikleridir. Kartografyadaki bir yüzeyin bir başka yüzey üzerine haritasının çıkarılması diferansiyel geometri kavramlarına dayanan bir çalışmadır. Bu sahada vektör ve tansör hesap, düzenli bir şekilde kullanılır. Geometrinin bu bahsinin anlaşılmasında, diferansiyel hesap esaslarının iyi bilinmesi gerekmektedir.

Bir yüzey uzaydaki dik kartezyen koordinatlarda f(x,y,z)=O fonksiyonu ile, uzay eğrisi ise iki yüzeyin arakesitiyle gösterilir. Bir uzay eğrisinin bir diğer ifâdesi ise parametrik gösterilimle olur. x=f(t) y=g(t), z=h(t) ifâdesi gibi, indisli olarak xi=fi(t) (i=1,2,3) şeklinde de olabilir. Burada t parametredir. Yay uzunluğu olan s, eğri üzerinde sabit bir noktadan ölçülür.

Eğrinin P(xi) noktasının bulunduğu küçük parçasında dxi/dt teğet vektörünün, ti=dxi/ds ise, birim teğet vektörünü gösterir. p noktasında ti’ye dik olan düzleme “normal düzlem” denir. ti’nin değişim oranına (diferansiyeline) eğrilik vektörü denir. Ve bu ti’ye diktir. ti (teğet) ni (normal) birim vektörlerinin arasında kalan düzleme öskülatör düzlem denir. Bu düzleme (P) noktasında dik olan vektöre binormal vektör denir. bi ile gösterilir. Üç vektörün meydana getirdiği ti, ni, ve bii formuna üçparmak kuralı denir. Çünkü eğri P noktası etrâfında hareket eder. Bu hareket Frenet formülleri ile ifâde edilir.

Yüzeyler f(x,y,z)=0 veya xi=xi (u,v) parametrik gösterilim ile ifâde edilir u ve v parametreleri yüzeyin eğrileri veya gauss koordinatları olarak isimlendirilir. Bir S yüzeyinin eğrileri u ve v arasındaki ilişki ile verilmektedir.
 
Geri
Üst